Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Feng-Xia Sun,* Hua Zhao and Hong-Xia Du

College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China

Correspondence e-mail: fxsun001@163.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.051$
$w R$ factor $=0.149$
Data-to-parameter ratio $=12.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Ethyl 5-carboxy-2,6-dimethyl-4-(4-nitro-phenyl)-1,4-dihydropyridine-3-carboxylate

The title compound, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}$, is an important intermediate in the synthesis of nefidipine analogs. The crystal packing is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

4-Aryl-1,4-dihydropyridine-3,5-dicarboxylic diesters of the nefidipine type have become almost indispensable for the treatment of cardiovascular diseases since they first appeared on the market in 1975 (Yiu \& Knaus, 1999; Goldmann \& Stoltefuss, 1991). The title compound, (I) (Fig. 1), is a key intermediate for the preparation of nefidipine analogs (Dagnino et al., 1987).

The dihydropyridine ring has a flattened boat conformation. This compares well with the structure of 3-benzotriazol-1-yl-5-ethyl-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5dicarboxylate and nefidipine (Sun et al., 2006; Hofmann \& Cimiraglia, 1990). Atoms C3 and N1 are displaced from the mean plane formed by the other atoms in the same ring by 0.389 (1) and 0.196 (1) \AA, respectively. The dihedral angle between the benzene ring and the $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 4 / \mathrm{C} 5$ plane is 89.16°. The crystal packing is stabilized by intermolecular $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Experimental

Diethyl 2,6-dimethyl-4-(4-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, (II), was prepared by a Hanstzch condensation reaction (Dagnino et al., 1987). The title compound, (I), was prepared by

Received 24 October 2006 Accepted 30 October 2006
hydrolysis of (II). Compound (II) (374 mg , 1 mmol) was dissolved in ethanol $(10 \mathrm{ml}) . \mathrm{NaOH}(320 \mathrm{mg}, 5 \mathrm{mmol})$ in water $(2 \mathrm{ml})$ was added to the solution at room temperature. The reaction mixture was stirred under reflux for a further 8 h . The solvent was removed by vacuum evaporation. Water $(50 \mathrm{ml})$ was added and the solution was extracted with ethyl acetate. The organic layer contained the unreacted ester. The aqueous layer was acidified with hydrochloric acid to $\mathrm{pH} 3-4$. The target compound was extracted with ethyl acetate and purified by chromatography on a silica-gel column (eluted by ethyl acetate and petroleum, 1:5) at room temperature. The product was obtained in 50% yield. Suitable crystals were obtained by slow evaporation of an ethanol solution.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}$	$Z=4$
$M_{r}=346.33$	$D_{x}=1.343 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / n$	$\mathrm{Mo} \mathrm{K} \mathrm{\alpha} \mathrm{radiation}$
$a=10.323(2) \AA$	$\mu=0.10 \mathrm{~mm}^{-1}$
$b=15.590(3) \AA$	$T=294(2) \mathrm{K}$
$c=11.202(3) \AA$	Block, yellow
$\beta=108.201(4)^{\circ}$	$0.40 \times 0.28 \times 0.10 \mathrm{~mm}$
$V=1712.7(7) \AA^{3}$	
Data collection	
Bruker SMART CCD area-detector	8538 measured reflections
\quad diffractometer	3024 independent reflections
φ and ω scans	1890 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.036$
$\quad(S A D A B S ;$ Sheldrick, 1996$)$	$\theta_{\text {max }}=25.0^{\circ}$
$T_{\text {min }}=0.960, T_{\text {max }}=0.990$	

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0635 P)^{2}\right. \\
& \quad+0.8733 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.25 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.149$
$S=1.02$
3024 reflections
239 parameters
H -atom parameters constrained

Figure 1
The molecular structure of compound (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.

The bond angles were also restrained by restraining the $1-3$ atom distances.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge the support from Hebei University of Science and Technology.

References

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Dagnino, L., Li, K. K., Wolowyk, M. W., Wynn, H. \& Triggle, C. R. (1987). J. Med. Chem. 30, 640-646.
Goldmann, S. \& Stoltefuss, J. (1991). Angew. Chem. Int. Ed. Engl. 30, 15591578.

Hofmann, H. J. \& Cimiraglia, R. (1990). J. Mol. Struct. (Theochem), 205, 1-11. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sun, F.-X., Fu, D.-C. \& Yu, Y.-F. (2006). Acta Cryst. E62, o4207-o4208.
Yiu, S. H. \& Knaus, E. E. (1999). Drug Dev. Res. 48, 26-37.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

